求小学六年级语文数学英语期末复习资料(人教版)?

常用的数量关系

1,份数×份数=总份数÷份数=总份数÷份数=份数。

2、1倍数×倍数=倍数÷1倍数=倍数÷倍数= 1倍数

3.速度×时间=距离/速度=时间/距离/时间=速度。

4.单价×数量=总价÷单价=总数量÷数量=单价

5.工作效率×工作时间=总工作量÷工作效率=工作时间÷总工作量÷工作时间=工作效率。

6.附录+附录=总和,并且-一个加数=另一个加数

7.减-减=差减-差=减差+减=减

8.因子×因子=产品产品÷一个因子=另一个因子

9.被除数=商被除数=除数商×除数=被除数

小学数学图形的计算公式

1,正方形(c:周长s:面积a:边长)

周长=边长×4 C=4a

面积=边长×边长S=a×a

2.立方体(V:体积A:边长)

表面积=边长×边长×6 S表=a×a×6

体积=边长×边长×边长v = a× a× a。

3.矩形(C:周长S:面积A:边长)

周长=(长+宽)×2 C=2(a+b)

面积=长度×宽度S=ab

4.长方体(V:体积S:面积A:长度B:宽度H:高度)

(1)表面积(长×宽+长×高+宽×高)× 2s = 2 (AB+AH+BH)

(2)体积=长×宽×高V=abh

5.三角形(S:面积A:底边H:高度)

面积=底×高÷2 s=ah÷2

三角形的高度=面积×2÷三角形的底边=面积×2÷高度

6.平行四边形(s:面积a:底部h:高度)

面积=底部×高度s=ah

7.梯形(s:面积a:上底部b:下底部h:高度)

面积=(上底+下底)×高度÷2 s=(a+b)× h÷2。

8.圆(s:面积c:周长л d=直径r=半径)

(1)周长=直径× л = 2×л×半径C=лd=2лr

(2)面积=半径×半径× л

9.圆柱体(V:体积H:高度S:底部面积R:底部半径C:底部周长)

(1)侧面积=底部周长×高度=ch(2лr或лd) (2)表面积=侧面积+底部面积×2。

(3)体积=底面积×高(4)体积=侧面积÷2×半径。

10,圆锥体(v:体积h:高度s:底部面积r:底部半径)

体积=底部面积×高度÷3

11,总份数/总份数=平均数。

12,和差问题的公式

(和+差)÷ 2 =大数(和-差)÷ 2 =小数。

13和时间问题

sum÷(multiple-1)= decimal×multiple =大数(或sum-decimal =大数)

14,微分时间问题

差÷(倍数-1) =小数×倍数=大数(或小数+差=大数)

15,遇到问题

会议距离=速度×会议时间

会议时间=会议距离÷速度和

速度总和=会议距离/会议时间

16,浓度问题

溶质重量+溶剂重量=溶液重量。

溶质/溶液的重量× 100% =浓度。

溶液重量×浓度=溶质重量

溶质重量-浓度=溶液重量。

17,利润和折扣

利润=售价-成本

利润率=利润/成本× 100% =(售价/成本-1) × 100%。

涨跌金额=本金×涨跌百分比

利息=本金×利率×时间

税后利息=本金×利率×时间× (1-20%)

通用单位转换

长度单位转换

1km = 1000m 1m = 10分米1分米= 10cm 1m = 10cm 1cm = 10mm。

面积单位转换

1平方公里=100公顷1公顷=10000平方米1平方米=100平方分米。

1平方分米=100平方厘米1平方厘米=100平方毫米

体积(体积)单位转换

1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升

1立方厘米=1毫升1立方米=1000升

重量单位转换

1t = 1000kg 1kg = 1000g 1kg = 1kg。

人民币单位换算

1元=10角1角=10点1元=100点。

时间单位转换

1世纪=100 1年=12月(31天)有:1 \ 3 \ 5 \ 7 \ 8 \ 10 \ 65438+

平年2月28日,闰年2月29日:平年365天,闰年366天:1 =24小时。

1小时=60分钟1分钟=60秒1小时=3600秒

基本概念

第一章数和数的运算

一个概念

(1)整数

1整数的意义

自然数和0都是整数。

2自然数

当我们数物体时,1,2,3...用来表示物体数量的数字称为自然数。

没有对象,用0表示。0也是自然数。

3计数单位

一个,十个,一百个,一千个,一万个,十万个,一百万个,一千万个,一亿个...都是计数单位。

每两个相邻计数单位之间的推进率为10。这种计数方法叫做十进制计数法。

4位数

计数单位按一定的顺序排列,它们的位置称为数字。

5个数的整除性

当整数A除以整数b(b ≠ 0)时,商是一个没有余数的整数,所以我们说A能被B整除,或者说B能被A整除..

如果数A能被数B整除(b ≠ 0),则称A为B的倍数,称B为A的约数(或A的因子)。乘法和除数是相互依赖的。

因为35能被7整除,所以35是7的倍数,7是35的除数。

一个数的除数是有限的,其中最小的除数是1,最大的除数是它本身。比如10的除数是1,2,5,10,其中最小的除数是1,最大的除数是10。

一个数的倍数的个数是无限的,最小的倍数就是它本身。3的倍数是:3,6,9,12...最小倍数为3,但没有最大倍数。

以0、2、4、6、8为单位的数可以被2整除,比如202、480、304可以被2整除。。

以0或5为单位的数可以被5整除,比如5,30,405可以被5整除。。

一个数的每一位上的数之和可以被3整除,所以这个数可以被3整除。比如12,108,204都可以被3整除。

一个数的每个数位之和能被9整除,这个数也能被9整除。

能被3整除的数不一定能被9整除,但能被9整除的数一定能被3整除。

一个数的后两位可以被4(或25)整除,这个数也可以被4(或25)整除。比如16,404,1256都可以被4整除,50,325,500,1675都可以被25整除。

一个数的后三位能被8整除(或125),这个数也能被8整除(或125)。比如1168,4600,5000,12344都可以被8整除,1125,13375,5000都可以被125整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是一个偶数。自然数按其被2整除的程度可分为奇数和偶数。

一个数如果只有两个1的约数就叫质数(或称素数),100以内的质数是:2,3,5,7,11,13,17,65438。

如果一个数除了1和它本身之外还有其他的约数,那么这个数叫做合数。例如,4、6、8、9和12都是合数。

1不是质数也不是合数,自然数除了1不是质数就是合数。自然数如果按其约数的个数分类,可分为质数、合数和1。

每个合数都可以写成几个质数的乘积。每个质数都是这个合数的一个因子,叫做这个合数的质因数。比如15=3×5,3和5称为15的质因数。

把一个合数乘以一个质因数来表示,叫做质因数分解。

例如,将28分解成质因数。

几个数的公约数叫做这些数的公约数。最大的一个叫做这些数的最大公约数。比如12的约数是1,2,3,4,6,12;18的约数是1,2,3,6,9和18。其中1,2,3,6是12和1 8的公约数,6是它们的最大公约数。

公约数只有1两个数,称为互质数。有以下几种情况:

1与任何自然数互质。

两个相邻的自然数互质。

两个不同的素数互质。

当合数不是质数的倍数时,合数和质数互质。

当两个合数的公约数只有1时,这两个合数互质。如果任意两个数互质,就说它们互质。

如果较小的数是较大数的除数,那么较小的数就是这两个数的最大公约数。

如果两个数是质数,那么它们的最大公约数是1。

几个数的公倍数称为这些数的公倍数,最小的称为这些数的最小公倍数。例如,2的倍数是2,4,6,8,10,12,14,16,18...

3的倍数是3,6,9,12,15,18...其中6,12,18...是2和3的公倍数,6是它们的最小公倍数。。

如果较大的数是较小数的倍数,则较大的数是两个数的最小公倍数。

如果两个数是质数,那么这两个数的乘积就是它们的最小公倍数。

几个数的公约数是有限的,而几个数的公倍数是无限的。

(2)小数

1十进制的含义

将整数1分成10、100、1000...十分之一、百分比、千分之一...可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几...

十进制由整数部分、小数部分和小数点部分组成。数中的点称为小数点,小数点左边的数称为整数部分,小数点右边的数称为小数部分。

在小数中,每两个相邻计数单位之间的级数是10。小数部分的最高小数单位“十分之一”和整数部分的最低单位“一”之间的推进率也是10。

2小数的分类

纯小数:整数部分为零的小数称为纯小数。比如0.25和0.368就是纯小数。

带小数:整数部分不为零的小数称为带小数。比如3.25,5.26都是带小数的。

有限小数:小数部分的位数是有限小数,称为有限小数。比如41.7,25.3,0.23都是有限小数。

无限小数:小数部分的位数是无限小数,称为无限小数。例如:4.33...3.145438+05926 ...

无限非循环小数:数字的小数部分,数字排列不规则,位数不限。这样的小数称为无限循环小数。例如:∈

循环小数:一个数的小数部分,其中一个数或几个数轮流重复出现,称为循环小数。例如:3.555…0.0333…12.15438+009…

循环十进制的小数部分,依次重复出现的数称为循环十进制的循环部分。比如3.99 ……的周期段是“9”,0.5454 ……的周期段是“54”。

纯循环小数:循环段从小数部分的第一位开始,称为纯循环小数。例如:3.111.5656...

混合循环小数:循环节不是从小数部分的第一位开始。这叫做混合循环小数。3.1222 …… 0.03333 ……

写循环小数时,为简单起见,小数的循环部分只需要一个循环段,在这个循环段的第一个和最后一个数字上加一个点。如果圆形部分只有一个数字,只需单击它上面的一个点。例如:3.777...简写作0.5302302...简写作。

(3)分数

1分数的显著性

把单位“1”平均分成几个部分,代表这样一个或几个部分的数叫做分数。

在乐谱中,中间的横线称为分割线;分数线以下的数字称为分母,表示单位“1”平均分为多少份;分数线以下的数字叫分子,表示有多少份。

将单位“1”平均分成几份,代表一份的数称为分数单位。

2分数的分类

真分数:分子小于分母的分数称为真分数。真实分数小于1。

假分数:分子大于分母或分子等于分母的分数称为假分数。虚假分数大于或等于1。

带分数:假分数可以写成由整数和真分数组成的数,通常称为带分数。

3缩减和综合评分

把一个分数变成和它相等,但分子和分母更小的分数,叫做除数。

分子的分母是一个质数的分数,叫做最简分数。

将不同分母的分数除以同分母的分数等于原分数,称为总分数。

(4)百分比

1表示一个数是另一个数的百分数,称为百分数,也叫百分比或百分数。百分比通常用“%”表示。百分号是表示百分比的符号。

两种方法

(一)读写的数量

1.整数读取法:从高到低,逐级读取。读一亿一万级的时候,先按照一亿级的阅读方法读,然后在后面加一个字“一亿”或者“一万”。每一级末尾的零不读取,其他位数的几个零只读取一个零。

2.整数的书写:从高到低,逐级书写。如果任何数字上没有单位,则在该数字上写0。

3.小数读法:读小数时,整数部分按整数读法读,小数点读为“点”,小数部分按顺序从左到右读每个数位上的数字。

4.小数书写:写小数时,整数部分写成整数,小数点写在每一位的右下角,小数部分依次写在每一位上的数字。

5.如何读分数:读分数时,先读分母,再读“分数”,再读分子,分子和分母都读整数。

6.分数怎么写:先写分数,再写分母,最后写分子,写成整数。

7.百分比的读取方法:读取百分比时,先读取百分比,再读取百分比符号前面的数字。读取时,将其作为整数读取。

8.百分数的写法:百分数通常不用分数形式,而是在原分子后加一个百分号“%”来表示。

(二)重写的次数

为了方便读写,一个大的多位数往往被改写成以“一万”或“一亿”为单位的数。有时,如果有必要,可以省略这个数的某个数字后的数字,写成一个近似值。

1.确切数字:现实生活中,为了计数方便,较大的数字可以改写成以万为单位或以亿为单位的数字。重写后的数字是原数字的精确数字。比如1254300000改写成一万,数字就是125430000;改写成以亿为单位的数字654.38+0254.3亿。

2.约数:根据实际需要,我们也可以用一个相近的数来表示一个较大的数,省略某个数字后的尾数。例如:1302490015省略一亿后的尾数是13亿。

3.四舍五入法:如果要省略的尾数最高位数为4或4以下,则去掉尾数;如果尾数最高位的数字是5或大于5,则尾数被截断,1被加到它的前一位。比如省略34.59亿后的尾数是35万左右。省略472509742亿后的尾数约为47亿。

4.尺寸比较

1.比较整数的大小:比较整数的大小,位数多的数会大一些。如果数字相同,则查看最高的数字。如果最高位上的数字越大,数字就越大。最高位上的数字是一样的,只看下一位,哪个位上的数字更大就更大。

2.比较小数的大小:先看它们的整数部分,整数部分大的数就大;如果整数部分相同,则第十位较大的数较大;十分之一的数字是一样的,百分位中数字最大的数字最大...

3.比较分数的大小:分母相同的分数和分子大的分数较大;对于分子相同的数字,分母较小的分数较大。如果分数的分母和分子不一样,先把分数除以,然后比较两个数的大小。

(三)相互的数量

1.十进制分量数:小数有好几个,所以在1后面写几个零作为分母,去掉原来小数点后面的小数点作为分子,可以减少报价点数。

2.分数变成小数:分子除以分母。能整除的转换成有限小数,有些不能整除的转换成有限小数。一般保留三位小数。

3.一个最简单的分数,如果分母除了2和5之外不含其他质因数,这个分数可以化为一个有限小数;如果分母包含2和5以外的质因数,这个分数就不能化为有限小数。

4.小数成百分比:只需将小数点右移两位,后面加几百个分号即可。

5.小数百分比:小数百分比,只需去掉百分号,将小数点左移两位即可。

6.分数换算成百分数:通常先把分数换算成小数(小数三位一般是用不完的时候保留),再把小数换算成百分数。

7.百分比的十进制化:首先,把百分比改写成分量数,提出一个可以化简为最简单分数的报价。

(4)数的整除性

1.通常通过短除法将一个合数分解成质因数。先除以能把这个复数整除的质数,直到商是质数,然后把除数和商写成乘法的形式。

2.求几个数的最大公约数的方法是:将这几个数的公约数连续相除,直到得到的商只有1的公约数,然后将所有的公约数相乘得到乘积,就是这几个数的最大公约数。

3.求几个数的最小公倍数的方法是:除以这几个数(或其中的一部分)的公约数,直到它互质(或成对互质),然后乘以所有的约数和商得到乘积,就是这几个数的最小公倍数。

4.成为互质关系的两个数:1和任意自然数互质;两个相邻的自然数互质;当合数不是素数的倍数时,合数和素数互质;当两个合数的公约数只有1时,这两个合数互质。

(5)近似点和一般点

归约法:用分子分母的公约数(1除外)去分子分母;通常,我们必须把它分开,直到得到最简单的分数。

一般除法的方法:先求出原分数的分母的最小公倍数,然后把每个分数变成以这个最小公倍数为分母的分数。

三大性质和定律

(一)商不变定律

商不变定律:除法中,被除数和除数同时扩大或缩小相同的倍数,商不变。

(二)小数的性质

小数的性质:在小数末尾加零或去零,小数的大小不变。

(3)小数位置的移动引起小数大小的变化。

1.如果小数点右移一位,原数将扩大10倍;如果小数点右移两位,原数将扩大100倍;如果小数点右移三位,原来的数将放大1000倍...

2.如果小数点左移一位,原数将减少10倍;如果小数点左移两位,原数将减少100倍;如果小数点左移三位,原来的数将减少1000倍...

3.小数点左移或右移不够时,用“0”补足位数。

(四)分数的基本性质

分数的基本性质:分数的分子和分母都乘以或除以同一个数(零除外),分数的大小不变。

(5)分数与除法的关系

1.分频器/分频器=分频器/分频器

2.因为零不能被整除,所以分数的分母不能为零。

3.除数相当于分子,除数相当于分母。

四则运算的意义

整数运算

1整数加法:

把两个数合并成一个数的运算叫做加法。

在Djaafari中,相加的数叫做加数,相加的数叫做和。附录是部分数字,总和是总数。

附录+附录=和一个加数=和-另一个加数。

2整数减法:

给定两个加数和其中一个加数的和,求另一个加数的运算叫做减法。

在减法中,已知的和称为被减数,已知的加数称为减法,未知的加数称为差。被减数是总数,减法和差分别是部分数。

加法和减法是互逆运算。

3整数乘法:

求几个相同加数之和的简单运算叫做乘法。

在乘法中,同一个加数和同一个加数的个数叫做因子。同一个加数的和叫做积。

在乘法中,将0乘以任何数都会得到0。1,然后用任意数乘以任意数。

一个因子×一个因子=一个乘积=一个乘积÷另一个因子。

4整数除法:

给定两个因子和其中一个因子的乘积,求另一个因子的运算叫做除法。

除法中,已知的积叫被除数,已知的因子叫除数,求的因子叫商。

乘法和除法是互逆运算。

在除法中,0不能被除。因为0乘以任何数都得0,任何数除以0都得不到一个确定的商。

分频器/分频器=分频器=分频器/分频器=商×分频器

推荐上2017-11-25。

查看所有4个答案。

头教育六年级期末数学试卷-有效网络课程双师在线中小学辅导

根据文中提到的数学,推荐给你。

校长优课独创“双7”教学法,针对引导预习、课后练习、联动中考、课堂总结、实景练习、强化知识、重难点引导学习七种学习方法,形成独特的课程体系,让学习事半功倍。

M.zhangmenyouke.com广告

记住1到6年级的数学公式超级快!名校霸都记得这个!

根据文中提到的数学,推荐给你。

名校老师都在教1到6年级数学公式记忆方法,快速学习数学公式。

Xiaohongshu.com广告

更多专家

六年级上册总复习资料(中英文)

专家1在线答疑到1。

5分钟内回复| 10,000名专业受访者

马上提问

《最美的烟火》咨询了一个高等教育问题,并做了好评。

蓝秋旺子咨询了一个高等教育问题,并做了好评。

大蒜咨询了一个高等教育问题,做了好评。

188 * * * 8493咨询了一个高等教育问题,并做了好评。

篮球大图咨询了一个高等教育问题,发表了很好的评论。

动物公园咨询了一个高等教育问题,并给出了好评。

AKA咨询了一个高等教育问题,并给出了好评。