*小波分析方法
小波分析方法是近年来发展起来的新的数学方法,小波的概念最早由法国地球物理学家J.Morlet和A.Grossmann在20世纪70年代分析处理地震数据时提出的,广泛应用于信号处理、图像处理、模式识别、地球物理勘探等领域。
长期以来,信号处理中最基本的数学工具是Fourier分析。Fourier分析能有效地分析平稳信号,能通过频谱函数方便地指明平稳信号的主要谐波成分。然而在实际应用中,我们常常需要分析频域特性随时间变化的非平稳信号,如音乐信号、语音信号、地球物理信号等,需要了解某些局部时域信号所对应的频率特性,也需要了解某些频率的信息出现在哪些时间或空间段上。上述情形都提出了关于短时段时域信号所对应的局部频域特性,即时-频局部化的要求。
为了克服Fourier变换在时-频局部化方面的不足,D.Gabor提出了窗口Fourier变换(简记为WFT)方法。WFT在Fourier分析的基础上取得了进步,用WFT分析信号可在时-频窗这个局部范围内观察信号;但是WFT无法使时-频窗形状是自适应变化的,即对低频信号,其窗口形状自动变得扁平,对高频信号,其窗口形状自动变得瘦长。小波变换可以克服WFT的这一缺点。
连续小波变换定义为
地球物理勘探概论
设定
地球物理勘探概论
则称函数系ψa,b(t)为小波函数或简称为小波(Wavelet),它是由函数ψ(t)经过不同的时间尺度伸缩和不同的时间平移得到的。式(3-7-30)中的R表示实数域;ψ(t)称为母小波;a是时间轴尺度伸缩参数,大的a值对应于小的尺度,相应的小波ψa,b(t)伸展较宽;反之,小的a值对应的小波在时间轴上受到压缩;b是时间平移参数,不同b值的小波沿时间轴移动到不同位置。系数|a| -1/2是归一化因子,它的引入是为了使不同尺度的小波保持相等的能量。
一个函数ψ(t)能够作为母小波,必须满足:
地球物理勘探概论
该式的物理意义是:ψ(t)是一个振幅衰减得很快的“波”,“小波”即由此得名。
连续小波变换可以看成是连续变化的一组短时傅里叶变换的汇集,这些短时傅里叶变换对不同的信号频率使用了宽度不同的窗函数。具体来说,即高频用窄时域窗,低频用宽时域窗。小波变换具有的这一宝贵性质称为“变焦距”性质。
小波变换是重磁异常分解的有效工具,利用小波多尺度分析方法,可以将重磁异常分解到不同尺度空间中,不同尺度的重磁异常反映了不同地质体的规模和埋深。作为一种新而有效的位场分离途径,小波多尺度分析方法为重磁资料解释和研究地壳提供了新的思路,在国内外得到了广泛的应用。侯遵泽、杨文采等(1995,1997)对中国大陆布格重力异常进行了小波多尺度分解,得到中国大陆地壳内及上地幔各种尺度成分意义下密度不均匀分布情况。高德章等(2000)采用二维小波多尺度分解技术,对东海及邻区自由空间重力异常进行分解,得到了沉积基底面和莫霍面产生的重力异常,所得到的四阶小波细节与东海陆架沉积盆地及邻区沉积基底面的起伏具有较好的一致性。
小波多尺度分析又称多分辨分析,它把一个信号分解为逼近部分和细节部分,表示为 ,Ai是逼近部分,Dj细节部分。图3-7-11为三层多尺度分析结构图,其中,S是信号,A1、A2、A3是逼近部分,D1、D2、D3是细节部分。
图3-7-11 三层多尺度分析结构图
把图3-7-11 多尺度分析方法应用于磁测资料处理,野外观测值ΔT经一阶小波分解,得到局部场ΔT局1和区域场ΔT区1,把 ΔT区1作二阶小波分解得到ΔT局2和ΔT区2,再把ΔT区2作三阶小波分解可得ΔT局3和ΔT区3…还可以继续分解。根据异常的特征和地质情况来决定分解到几阶,解释时要赋予小波逼近部分和各阶的细节明确的地质意义。
地球物理勘探概论
把大冶铁矿ΔZ磁异常[图3-7-12(a)]用多尺度分析方法分解为1~5阶细节和5阶逼近,用谱分析方法得出一阶细节场源似深度26m[图(b)],局部异常反映露天矿及浅表磁性不均匀以及人文活动干扰(如铁矿开采、钻探等钢铁制品干扰)。二阶细节场源似深度144m[图(c)],三阶细节场源似深度235m[图(d)],反映地表至约200m深铁矿体的磁异常,异常特征为正负伴生,两侧都有负值,表明铁矿体是下延有限的形体。四阶细节场源似深度488m[图(e)],图中磁异常正负伴生,正异常幅值大于1000nT,两侧有负异常伴生,表明500m左右深仍有磁性强的铁矿体存在。
图3-7-12 大冶铁矿ΔZ磁异常小波多尺度分解
五阶细节场源似深度912m[图(f)],西段已经看不出明显局部异常,推测在1000m深以下不太可能有铁矿体存在。东段尖山-犁头山在五阶细节上有400nT局部异常,推测该处深部磁性体埋深1000m左右。从异常特征看,东段尖山-犁头山磁性体要比中西段尖林山、龙洞磁性体深。图中西北角的铁门坎区还存在有强度大于800nT没有闭合的正异常,是深部区域场,还是与局部异常有关,尚不清楚其性质。从异常特征看,它与尖山-犁头山段局部异常特征完全不一样。五阶逼近(图未列出)为西南负、东北正的磁场特征,反映大冶铁矿区西南部为无磁性大理岩,而东北部为具磁性的闪长岩体。