dxd
题目可能有错误,大概是:
∑∫∫2x^2zdydz+y(z^2+1)dzdx+(9-z^3)dxdy,∑为曲面z=x^2+y^2+1(1<=z<=2)下侧
添加z=2上侧为Σ1,封闭图形所谓空间为Ω,利用高斯公式,并用柱坐标计算:
原式=Ω∫∫∫(4xz+z^2+1-3z^2)dxdydz-∑1∫∫2x^2zdydz+y(z^2+1)dzdx+(9-z^3)dxdy
=∫[0,2π]dθ∫[0,1]ρdρ∫[ρ^2+1,2](4ρcosθz-2z^2+1)dz-∫∫[x^2+y^2<=1]dxdy
=∫[0,2π]dθ∫[0,1]ρ[2ρcosθz^2-2/3z^3+z][ρ^2+1,2]dρ-π
=∫[0,2π]dθ∫[0,1]ρ[8ρcosθ-2ρcosθ(ρ^2+1)^2-16/3+2/3(ρ^2+1)^3+2-(ρ^2+1)dρ-π
=下面自己算