逻辑思维训练题
浅谈高一数学逻辑思维的培养
1.小红家的挂钟响了好几次,每半个小时一次。请问一个* * *从下午2点到5点响了几次?
2.将3、4、5、6、7、8、9、10这八个数字分别填入下面的()中(每个数字只能用一次),这样两个公式都有效。
( )+( )-( )=( )
( )+( )-( )=( )
3.将2、5、6、8、9这五个数字分别放入两位数中,最大的两位数是(),最小的两位数是()。
4.小明6岁,妹妹13岁。5年后她姐姐多大了?
5.孩子们放学后排队。丁丁前面7个人,后面6个人。这个团队有多少人?
6.冯晓这个群体有10人。他要和组里的每个人握手几次?
7.学生排队打游戏。一* *有15个女生。老师让一个男孩插在两个女孩中间。一个* *,应该插几个男生?
8.把一块木头锯成五段需要多少次?
9.一个数在70到90之间,位数与位数之差为2。这个数字可能是()()。
10.妈妈需要20元买两条面包和两盒饼干,需要24元买三条面包和两盒饼干。1个面包是多少?一盒饼干多少钱?
11,8连续加8,把每次加的点数写在横线上。8, , , , , , , , , 。
12,小红和明明一起做的花。小红做了16花。给明明四朵花后,他们有了同样多的花。小红比明明多做了几朵花?
13和81连续减去9,在横线上写出每次减法的数字。81, , , , , , , , 。
14.三个孩子正在比较他们的身高。已知A比B高,C比A高,能给三个孩子的身高排序吗?
15,姐姐给了杨洋和多多各10个五角星,然后杨洋给了多多三个五角星,那么比杨洋多了几个五角星呢?
16,小丽唱一首歌需要五分钟,全班一起唱这首歌需要几分钟?
17,降序排列:17-9 12-8 13-6 16-7 11-6 14-8 28-9 36-。
& lt& lt& lt& lt& lt& lt& lt
18.一群孩子在排队。林平站在中间。他的前面和后面有七个人。这个孩子有几个人?
19,一根绳子把它对折了两次,然后用剪刀从中间剪开,这根绳子就成了()。
20,a * * *有16个孩子排队做操,杨洋前面有6个人,她后面有多少人?
红红参加了数学竞赛,并和每个参加竞赛的人握手。红红握了19次手。多少人参加了数学竞赛?
22.从3、6、9、12和15中任选三个数,写一个方程。试试看。你能写多少行?
23,一个两位数,位数比位数多3,这样的两位数能写出来吗?
24.把10个苹果分成不相等的三份。最大的数字是多少?
25.一本书有许多页。莉莉读了17页,瑞德读了28页。谁还剩下更多?还有多少页?
26.你能在下列()中填入什么数字?
50+()& gt;57 52-()& lt;46
27.有12男同学在做题。老师让一个女学生插在两个男学生中间。一个* * *,能插几个女同学?
28.高一一班和高一二班共56人,一班转1人,二班转1人。哪个班级很拥挤?还有多少人?
29.小龙14本,小明6本。小龙给小明几本书后,两人的书一样多?
30.明明是11生日,还邀请了12的同学。五个学生来了,但还有几个没到?
31,有15只鸟,又飞进来三只,然后又飞走八只。树上还剩多少只鸟?
32、发现规律
1 3 6 10 ( )( )( )( )
1 4 9 16( )( )( )( )
33.用█▲●的三张牌,你可以摆出六种排列方式,例如,请█▲●试着摆出其他几种排列方式。
34.爸爸给了亮亮和贝贝15本练习本,其中7本是亮亮用的,8本是贝贝用的。谁还剩下更多的练习本?还有多少份?
35.三个孩子比速度。请猜一猜:谁最慢?谁跑得最快?
小青说:我比萧冰慢;小静说:我比小青快;萧冰说我比小静慢;最快的是(),最慢的是()。
36.学校组织了一次秋游,萍萍想和团队里的每个人照张相。已知平邑* * *拍了15张照片,平邑的团队有()人。
37.一只蝴蝶有六条腿,那么两只蝴蝶有几条腿呢?三只蝴蝶有几条腿?
38.操场上有七个女孩和八个男孩在打球。过了一会儿,两个打球的男孩去踢足球了。有多少人在操场上打球?
39、按要求一圈。
(1)圈出○大于●
○○○○○○○○○
●●●●●
(2)圈出与○一样多的部分。
○○○○○○○○○
●●●●●
40.已知:▲+■ +■ = 7 ▲+▲+▲+■ = 13
然后:▲ = ()■ =()
41,多多妈妈用4块钱买了一个菠萝。用买一个菠萝的钱,她可以买两根甘蔗,用买一根甘蔗的钱,她可以买四个梨。一个梨多少钱?
42、一排学生从左到右,小红站在第五,从右到左,她站在第七,这一排有几个学生?
43.小红有八个球。小明给小红两个后,球数相同。小明有几个球?
44.第一排有6个○第二排有16个○。第二排给第一排多少,所以两排的数量是一样的?
45,16孩子站成一排。左边有8个人,他右边有几个人?
46.三个孩子同时吃三个苹果需要三分钟,10个孩子同时吃10个苹果需要()分钟。
47.小李和她的父亲都集邮。她的父亲给了小明三张邮票后,他们有了相同数量的邮票。爸爸比小李有多少张邮票?
48,70连续减去7,在横线上写下每次减法的数字:
70、 、 、 、 、 、 、
49.如果明天是妈妈的生日,你想给妈妈买一份生日礼物。现在有50块钱,怎么买?(用公式表示):钱包30元,眼镜35元,丝巾26元,帽子15元,手套10元,雨伞18元。
50.我姐有九个五毛钱,我姐有五个五毛钱,我姐给她几个五毛钱,所以他们的钱数是一样的?
51,已知:▲+●=17 ▲+●+●=20。
然后:▲ = () ● =()
52.需要三根火柴才能拼成一个三角形。你能用五根火柴杆建立两个三角形吗?画幅画
53.孩子们排队去公园。小丽前面有4个人,后面有9个人。小丽在哪里?有多少孩子去公园?
54.已知:6+○ = 11+△ = 12。
然后:○ = () △ =()
55.小红组有12人。他先和四个人握手,还有几个人没有?
56.很清楚这个群有12人。他要和组里的每个人握手几次?
57.A * * *有16个孩子排队做操。杨洋前面有6个人,她后面有多少人?
58.莉莉和彭彭都有一些书。莉莉给了彭彭六本书后,他们有了同样多的书。原来莉莉的书比彭彭的多。
59.我哥哥和弟弟手里都有一些铅笔。我哥给我哥五支笔之后,笔数是一样的。那么我哥哥比我哥哥多几支铅笔呢?
60.小红有20个球。小明给小红两个球后,两人的球数相同。小明原本有几个球?
61,红红所有人和小组握手一次,a * * *握手13次。这个小组有多少人?
62.杨洋先和组里的五个人握手,然后和剩下的七个人握手。这个小组有多少人?
初三数学:12逻辑思维训练题综合练习。
第一,和差问题
给定两个数的和与差,求这两个数。
公式:
和加差越来越大;
除以2,就是大;
并减去差值,减少量越小;
除以2,就是小。
例:已知两个数之和为10,差为2。找出这两个数字。
根据公式,大数=(10+2)/2=6,小数=(10-2)/2=4。
第二,鸡兔同笼的问题
公式:
假设所有的鸡,假设所有的兔子。
有多少只脚?少了几英尺?
除以脚差,就是鸡和兔子的数量。
例:鸡自由同笼,头36,脚120。找出鸡和兔子的数量。
求兔子的时候假设都是鸡,那么豁免子数=(120-36X2)/(4-2)=24。
找鸡的时候假设都是兔子,那么鸡的数量=(4x 36-120)/(4-2)= 12。
第三,浓度问题
(1)用水稀释
公式:
加水前要糖,加糖后要糖水。
糖水减去糖水就是加糖的量。
例:有20公斤浓度为15%的糖水。加了多少公斤水后,浓度就变成了10%。
在加水之前,先得到糖。原含糖量为:20X15%=3 (kg)。
糖用完了,浓度为10%的糖水应该有多少,3/10%=30 (kg)。
糖水减去糖水,减去后的糖水量为30-20=10 (kg)。
(2)糖浓度
公式:
加糖前要水,加水后要糖浆。
如果把糖水减去糖水,就能轻松解决问题。
例:有20公斤浓度为15%的糖水。加了多少公斤糖后,浓度就变成了20%。
在加糖之前,需要加水。原含水量为:20x(1-15%)= 17(kg)。
当水耗尽时,浓度为20%的糖水应该有多少,包括17kg水,17/(1-20%)= 21.25(kg)。
糖水减去糖水,糖水的量减去原来糖水的量就是21.25-20=1.25 (kg)。
第四,距离问题
(1)遇到问题
公式:
在我们相遇的那一刻,距离都消失了。
除以速度之和,你就得到了时间。
例:甲、乙从距离120km的两个地方相向而行。甲方车速40km/h,乙方车速20km/h,他们相遇多久?
在我们相遇的那一刻,距离都消失了。即甲乙双方行进的距离正好是120km。
除以速度之和,你就得到了时间。即甲乙双方的总速度为40+20=60 (km/h),所以相遇时间为120/60=2 (h)。
(2)追溯问题
公式:
慢鸟先飞,快鸟在后追。
先走的距离,除以速度差,
时间是正确的。
哥哥和姐姐从家里去镇上。大姐以每小时3公里的速度行走。走了2个小时,小哥骑车以每小时6公里的速度出发。他什么时候会赶上来?
先走的距离是3X2=6 (km)。
速度差6-3=3 (km/h)。
所以追赶时间是:6/3=2(小时)。
动词 (verb的缩写)和比问题
已知整体分为部分。
公式:
家人希望大家在一起,分开也是有原则的。
分母比总和,分子自己的。
并且乘以比例,你值得拥有。
例:A、B、C三个数之和为27,A;B: C =2:3:4。找出A,B和C的数字..
分母比和,即分母为:2+3+4 = 9;
如果分子是自己的,那么A、B、C三个数占总和的比例分别是2/9、3/9、4/9。
和乘法比,所以数A是27X2/9=6,数B是27X3/9=9,数C是27X4/9=12。
第六,差比问题(差倍数问题)
公式:
我比你多,倍数是因果。
分子的实际差,分母的倍数差。
商是双倍的,
乘以它们各自的倍数,
可以得出两个数字。
举例:数字A比数字B大12,A: B = 7: 4。找出两个数字。
第一,加倍金额,12/(7-4)=4,
所以数字A是4X7=28,数字B是4X4=16。
七、工程问题
公式:
项目总金额设置为1,
1除以时间就是工作效率。
一个人做的时候,工作效率是自己的。
一起做的时候工作效率是大家效率的总和。
1减去已经做的事情没有做。
没完成的除以工作效率就是结果。
例:一个项目,自己4天完成,自己6天完成。甲乙双方同时做2天后,乙方单独做几天?
[1-(1/6+1/4)x2]/(1/6)= 1(天)
八、植树
公式:
要种多少树,
问路怎么样?
直接减去1,
圆就是结果。
例1:在一条长120m的道路上种树,间距4m。种了多少棵树?
这条路是直的。所以种120/4-1=29棵树。
例2:在长度为120m的环形花坛边种树,间距4m。种了多少棵树?
路是圆的,所以种120/4=30棵树。
九、盈亏问题
公式:
全盈亏,大减小;
一盈一亏,盈亏相加。
除以分布的差异,
结果就是物或人的分布。
例1:孩子分桃子,每个桃子10,少9个桃子;每人八个多七个。你想要几个孩子和桃子?
若一得一失,则公式为:(9+7)/(10-8)=8(人),对应的桃子为8X10-9=71(个人)。
例2:士兵携带子弹。45发每人多680发;每人50发就是200多发。多少士兵,多少子弹?
总利润的问题。如果把大的减去小的,公式是:(680-200)/(50-45)=96(人),子弹是96X50+200=5000(发)。
例3:学生分发书籍。10每人少了90本书;每人八本,还差八本。有多少书适合多少学生?
全损问题。从小的减去大的。那么公式就是:(90-8)/(10-8)=41(人),对应的书就是41X10-90=320(书)。
十、牛的放牧问题
公式:
每头牛每天吃的草量假定为1,
A的前b天吃的草量是多少?
m的前n天吃的草量是多少?
用小的减去大的,再除以相应天数的差。
结果就是草的生长速度。
原来的草量相应反过来。
公式是A前b天吃的草量减去b天乘以草的生长速度。
放牧量未知的牛分为两部分:
一小部分先吃新草,数量是草的比例;
用一些草除以剩余的牛的数量,得出所需的天数。
整个牧场上的草长得又密又快。27头牛6天可以吃草;23头牛可以在9天内吃掉这些草。问21要多少天才能把草做完。
假设每头牛每天的放牧量为1,27头牛6天的放牧量为27×6 = 162,23头牛9天的放牧量为23×9 = 207。
大的减去小的,207-162 = 45;对应的两天之间的差是9-6=3(天)
结果就是草的生长速度。所以草的增长率是45/3=15(牛/天);
原来的草量相应反过来。
公式是A第一天吃的草量减去第二天吃的草量乘以草的生长率。
所以原草量=27X6-6X15=72(牛/天)。
放牧量未知的牛分为两部分:
一小部分先吃新草,数量是草的比例;
也就是说,需要的21头牛分为两部分,一部分是15头牛吃新草;
剩下的21-15=6吃原草,
因此,所需天数为:原草量/分配剩余牛=72/6=12(天)。
XI。年龄问题
公式:
岁差不会变,加减的时候。
随着年龄的变化,倍数也在变化。
抓住这三点,一切都简单了。
例1:小军今年8岁,父亲今年34岁。几年后,他的父亲比小军大三倍。
岁差不会变,今年年龄差不多34-8=26,几年后也不会变。
知道了差和倍数,就转化为差比问题。
26/(3-1)=13.再过几年,爸爸的年龄是13X3=39,小军的年龄是13X1=13,所以应该是五年后。
例2:姐姐13岁,弟弟9岁。当他们的年龄之和是40岁的时候,他们应该多大?
岁差不会变,今年的年龄差13-9=4,几年后也不会变。
若干年后,年龄和为40,年龄差为4,转化为和差问题。
然后几年后,姐姐的年龄是(40+4)/2=22,弟弟的年龄是(40-4)/2=18,所以答案是9年后。
十二。剩余问题
公式:
有(N-1)个余数,
最小的是1,最大的是(N-1)。
当它周期性变化时,
别看业务,
看看余就知道了。
举例:如果现在时钟显示18点,分针转1990圈后会是几点?
分针转一圈就是1小时,24圈就是时针的1圈,也就是时针回到原来的位置。1980/24的余数是22,所以相当于分针向前转了22圈,相当于时针向前移动了22小时,相当于向后24-22=2小时,相当于时针向后拉了2小时。瞬针相当于18-2=16(点)。
练习和答案分析
有红色、黄色和白色的球。红黄球21,黄白球20,红白球19。三种球各有几个?
根据条件,(21+20+19)表示三种球总数的两倍,从中可以得到三种球的总数,再根据题目中的条件可以得到三种球的个数。
解决方案:总数:
(21+20+19)÷2=30(个)
白球:30-21=9(个)
红球:30-20=10(件)
黄色球:30-19=11(个)
答:白球9个,红球10,黄球11。
2.水泥厂原计划12天完成一项任务,由于每天多生产4.8吨水泥,10天就完成了任务。最初计划每天生产多少吨水泥?
根据题意,10天实际生产水泥比原计划多(4.8 × 10)吨,按原计划完成多出来的水泥需要(12-10)天,也就是说原计划(10)
解:4.8×10÷(12-10)= 24(吨)
a:原计划每天生产24吨水泥。
3.我父亲45岁。五年前,他父亲的年龄是他儿子的四倍。他儿子今年多大了?
分析显示,5年前,父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,加上5就是儿子今年的年龄。
解:(45-5)÷4+5
=10+5
=15(岁)
答:我儿子今年15岁。
4.初三一班59人,语文竞赛36人,数学竞赛38人,没有参加过任何一科的学生5人。有多少人参加了这两门课程?
想:参加语文竞赛的36人中,有的参加了数学竞赛,同样参加数学竞赛的38人中,有的也参加了语文竞赛。如果把两者加在一起,语文竞赛和数学竞赛都参加的人数都算两次,那么参加语文竞赛的人数加上一科没参加的人数减去全班人数,就是两科都参加的人数。
解:36+38+5-59=20(人)
答:两个科目都有20人参加。
5.有两桶油,A桶油的重量是B桶油的4倍,如果把A桶的18kg倒入B桶,两桶油的重量相等。每桶油有多少公斤?
想:“如果把18kg从A桶倒入B桶,两桶油一样重”,可以推导出A桶的重量比B桶多(18×2) kg,已知“A桶的重量是B桶的4倍”,已知(18×2) kg正好是B桶的重量。
解:18×2÷(4-1)= 12(公斤)
12×4=48(公斤)
A:结果A桶油48kg,B桶油12kg。
6.光明小学举办数学知识竞赛,20道题。答对一道题,得5分;答错一道题,扣3分;不回答,0分。小丽考了79分。她得到了几个正确的答案,几个错误的答案和几个没有回答的问题。
解析:根据题意,20道题全部答对100分,1道题答错损失(5+3)分,未答仅损失5分。小李输了(100-79)分。然后根据(100-79)÷8=2(题),分析正确、错误和未回答的题数。
解法:(5×20-75)÷8=2(问题)
20-2-1=17(标题)
回答:正确回答17,错误回答2,1不回答。
7.列车A长240米,每秒行驶20米;列车B长264米,以每秒16米的速度行驶。两辆汽车面对面。从两个头相遇到两个尾巴分开需要多少秒?
解析:“从两辆前车相遇到两辆后车分开”,两车行驶的距离是其长度之和,即(240+264)米,其速度之和是(20+16)米。根据距离、速度和时间的关系,可以得出所需时间。
解:(240+264)÷(20+16)
=504÷30
=14(秒)
答:从两车相遇到两车离开,需要14秒。
8.小明从家走到学校。如果他每分钟走50米,那就是该上课了。如果每分钟走60米,离上课时间还有2分钟。从家到学校有多远?
解析:如果在每分钟50米的到校时间内,以两种速度行走,相差(60×2)米,每秒相差(60-50)米,就可以求出小明每分钟50米的到校时间。
解:60×2(60-50)= 12(分钟)
50×12=600米
小明从家到学校的距离是600米。
9.有一条周长600米的圆形跑道。a和B同时朝同一个方向走。甲每分钟跑300米,乙每分钟跑400米。他们第一次见面多少分钟?
解析:根据已知条件,两个人第一次见面,B比A多跑一周,也就是600米,知道B每分钟比A多跑(400-300)米,就可以求出第一次见面时经过的时间。
解决方案:600(400-300)
=600÷100
=6(点)
a:两个人第一次见面用了六分钟。
10,有一个长方形的纸板。如果长度只增加2厘米,面积就增加8平方米;如果宽度只增加2cm,面积就增加了12cm2。这块长方形纸板的原始面积是多少?
解析:从“只增加2cm的宽度,面积就会增加12cm2”可以发现,原来的长度是(12÷2) cm。同样,原始宽度为(8÷2)厘米。如果我们找出长度和宽度,我们就可以找出原来的面积。
解:(12÷2)×(8÷2)=24(平方厘米)
这种长方形纸板的原始面积是24平方厘米。
四年级数学上册逻辑思维训练题
1年级和4年级的学生参加广播体操比赛,要排成每排11人的方阵,***11排。这个方阵有多少学生?
2.把棋子排成6×6的正方形。* * *需要多少棋子?
3.有1764株幼苗,准备在一个正方形苗圃(实心正方形)培育。这个方形苗圃每边要种多少苗?
4.576个人排成一个实心的正方形。这个广场的每一边有多少人?
5.一个每边6块的正方形可以排列多少块?总件数是多少?最外层有几块?
6.在建筑的方形平顶周围安装彩灯,每个角一盏,每边25盏。* * *周围安装了多少彩灯?
7.某校五年级学生排成方阵,最外层人数为60人。指骨外层两边各有多少人?这个方阵有多少五年级的学生?
8.广场场地周围站着16名学生,四个角都站着1人。如果两边站的人数相等,那么两边会站多少个学生?
9.有一个方形池塘,四个角上都种了1棵树。如果每边种6棵树,每边种多少棵树?
10,100少先队员参加无线电操比赛,十个人一排,组成一个方队。有多少少先队员站在这个广场周围?
11.在一个正方形场地的外围,四个角都竖立着1根杆子,一个* * *,竖立着28根杆子。正方形场地的每一边竖立着多少根柱子?
逻辑思维训练题相关文章:
1.逻辑思维训练500个问答
2.经典逻辑思维训练题25带答案
3.逻辑思维训练500题
4.逻辑思维训练问答
5.分享逻辑思维训练专题亮点
6.关于逻辑思维的智力训练问题
7.逻辑思维训练500题
8.逻辑思维训练500问答(5)
9.小学生逻辑思维训练问答
10.经典逻辑思维训练题