等式性质是什么

等式的基本性质: 等式两边同时加上(或减去)同一个整式,等式仍然成立。等式两边同时乘或除以同一个不为0的整式,等式仍然成立。

1、在等式两边同时加上或减去同一个值,等式依然成立。

如果a=b,则a±c=b±c(c为任意实数)。

反之也成立,即:如果a±c=b±c(c为任意实数),则a=b。

特别地,在等式两边同时加上或减去同一个代数式,等式也成立。

2、在等式两边同时乘以或除以(除数不为0)同一个值等式仍然成立。

如果a=b,则a×c=b×c,a÷d=b÷d(d≠0)。

反之,若a×c=b×c(c≠0),则a=b;若a÷d=b÷d(d≠0),则a=b。

特别地,在等式两边同时乘以或除以(除数不为0)同一个代数式,等式也成立。

3、在等式有意义的前提下,在等式两边同时取任意次方,等式仍然成立。

4、在等式有意义的前提下,在等式两边同时开任意次方,等式仍然成立。

5、在等式有意义的前提下,等式两边同时取倒数、相反数,等式仍然成立。

6、(等式的对称性)a=b,则b=a。

7、(等式的传递性)若a=b,b=c,则有a=c。

8、(等式的可加、可减性)若a=b,c=d,则a+c=b+d,a-c=b-d。

9、(等式的可乘性)若a=b,c=d,则a×c=b×d。

10、(等式的可除性)若a=b,c=d,则a÷c=b÷d。(c、d都不为0)

等式的性质既是解方程、化简等式时而进行等式的等价变形的理论依据,也是日后学习“不等式的基本性质”的重要基础。