莫比乌斯的个人简介
莫比乌斯,德国人,1790年11月出生,数学家,天文学家,被认为是拓扑学的先驱。莫比乌斯最著名的成就是发现了三维欧几里德空间中的一种奇特的二维单面环状结构——后人称为莫比乌斯带。其他重要的成就包括在射影几何中引进齐次坐标系、莫比乌斯变换(Moebius Transformations),数论中的莫比乌斯变换(Moebius transform)、莫比乌斯函数、莫比乌斯反演公式(Moebius inversion formula)等等。
莫比乌斯最初学法学,1809年转向数学 。从1809年到1814年他在莱比锡大学学数学并获博士学位。1814年在莱比锡任天文学教师 。1815年他获得教授资格,一年后在高斯的推荐下成为特级教授和莱比锡天文台的观测员。1846年他成为王家萨克森科学院建立成员之一。1848年他成为莱比锡天文台台长 。1868年9月26日逝世于莱比锡。莫比乌斯的父亲约翰·海因里希·莫比乌斯是南姆堡附近一个小镇上的舞蹈教师,他在莫比乌斯三岁时逝世。莫比乌斯的母亲是宗教改革领袖马丁·路德的后裔。
莫比乌斯的数学名著是1827年的《重心的计算》。[1-2] 该书引入了射影几何和仿射几何的若干基本概念,并以浅显易懂和清晰严格的论述表达了这一新的理论。他用齐次坐标表示空间的点,对于重量分别为a、b、c、d的四个点A、B、C、D给出了点系重心S的坐标关系式:(a+b+c+d)s=aA+bB+cC+dD。另外他引入了直射变换概念,即将直线变为直线的变换,接着证明了每一个直线变换都是一个射影变换。还指出射束中四条线的交比可以用顶点P处各个角的正弦来表示,并推出这个表示法的值与任何斜截线所得的四个点的交比是相同的,由此证明了交比在截影与投影下的不变性。