什么是上确界

上确界是序理论中最基础的概念之一。

给定偏序集(S, ≤),A是S的子集,则A的上确界(亦称最小上界)supA定义为满足以下条件的元素:

Ⅰ.supA∈S

Ⅱ.?a∈A ? a ≤ supA

Ⅲ.?a∈S,若a满足?b∈A ? b ≤ a,则supA≤ a。

即:supA是A的所有上界组成的集合的最小元(若存在)。

A的上确界亦被记为sup(A),lubA,LubA或∨A。

上确界在序理论中的对偶概念是下确界。

并非所有的A都能找到上确界。

数学分析

具体到数学分析中。一个实数集合M。若有一个实数a,使得M中任何数都不超过a,那么就称a是M的一个上界。

在所有那些上界中如果有一个最小的上界,就称为M的上确界。

一个有界数集有无数个上界和下界,但是上确界却只有一个。

常用结论

确界定理

在一般的数学分析学教材中,实数理论一章,为了说明实数的紧性,有一系列的定理,理论比较严密的前苏联教材一般是以戴德金分割定理为出发点证明其它的等价定理。而我国教材为了简化,很多都是从确界定理为出发点进行的证明,其他说明实数的连续性的定理还有区间套定理,有限覆盖定理等等。

确界定理是实数理论中最基本的结论之一,是实数集紧性的体现。

定理:任何有上界(下界)的非空实数集必存在上确界(下确界)。