水蒸汽如何转化为氢和氧

氢能 hydrogen energy 通过氢气和氧气反应所产生的能量。氢能是氢的化学能,氢在地球上主要以化合态的形式出现,是宇宙中分布最广泛的物质,它构成了宇宙质量的75%。由于氢气必须从水、化石燃料等含氢物质中制得,因此是二次能源。工业上生产氢的方式很多,常见的有水电解制氢、煤炭气化制氢、重油及天然气水蒸气催化转化制氢等。氢能具有以下主要优点:燃烧热值高,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。燃烧的产物是水,是世界上最干净的能源。资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源。目前,氢能技术在美国、日本、欧盟等国家和地区已进入系统实施阶段。

煤炭石油等矿物燃料的广泛使用,已对全球环境造成严重污染,甚至对人类自身的生存造成威

胁。同时矿物燃料的存量,是一个有限量,也会随着过度开采而枯竭。因此,当前在设法降低现有常

规能源(如煤、石油等)造成污染环境的同时,清洁能源的开发与应用是大势所趋。氢能是理想的清洁能源之一,已广泛引起人们的重视。氢不仅是一种清洁能源而且也是一种优良的能源载体,具有可储的特性。储能是合理利用能量的一种方式。太阳能、风能分散间歇发电装置及电网负荷的峰谷差或

有大量廉价电能能都可以转化为氢能储存,供需要时再使用,这种储能方式分散灵活。氢能也具有可

输的特性,如在一定条件下将电能转化为氢能,输氢较输电有一定的优越性。科学家认为,氢能在二

十一世纪能源舞台上将成为一种举足轻重的能源。

l、氢的产生途径

1.1电解水制氢.

水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的

逆过程,因此只要提供一定形式一定能量,则可使水分解。提供电能使水分解制得氢气的效率一般在

75-85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。利用电网峰谷差电解水制氢,作为一种贮能手段也具有特点。我国水力资源丰富,利用水电发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高,成本的降低及使用寿命的延长,其用于制氢的前景不可估量。同时,太阳能、风能及海洋能等也可通过电制得氢气并用氢作为中间载能体来调节,贮存转化能量,使得对用户的能量供应更为灵活方便。供电系统在低谷时富余电能也可用于电解水制氢,达到储能的目的。我国各种规模的水电解制氢装置数以百计,但均为小型电解制氢设备,其目的均为制提氢气作料而非作为能源。随着氢能应用的逐步扩大,水电解制氢方法必将得到发展。

1.2矿物燃料制氢

以煤、石油及天然气为原料制取氢气是当今制取氢气是主要的方法。该方法在我国都具有成熟的工艺,并建有工业生产装置。

(1)煤为原料制取氢气

在我国能源结构中,在今后相当长一段时间内,煤炭还将是主要能源。如何提高煤的利用效率及

减少对环境的污染是需不断研究的课题,将煤炭转化为氢是其途径之一。

以煤为原料制取含氢气体的方法主要有两种:一是煤的焦化(或称高温干馏),二是煤的气化。焦化是指煤在隔绝空气条件下,在90-1000℃制取焦碳副产品为焦炉煤气。焦炉煤气组成中含氢气55-60%(体积)甲烷23-27%、一氧化碳6-8%等。每吨煤可得煤气300-350m3,可作为城市煤气,

亦是制取氢气的原料。煤的气化是指煤在高温常压或加压下,与气化剂反应转化成气体产物。气化

剂为水蒸汽或氧所(空气),气体产物中含有氢有等组份,其含量随不同气化方法而异。我国有大批中小型合成氢厂,均以煤为原料,气化后制得含氢煤气作为合成氨的原料。这是一种具有我国特点的取得氢源方法。采用OGI固定床式气化炉,可间歇操作生产制得水煤气。该装置投资小,操作容易,其气体产物组成主要是氢及一氧化碳,其中氢气可达60%以上,经转化后可制得纯氢。采用煤气化制氢方法,其设备费占投资主要部分。煤地下气化方法近数十年已为人们所重视。地下气化技术具有煤

资源利用率高及减少或避免地表环境破坏等优点。中国矿业大学余力等开发并完善了"长通道、大断

面、两阶段地下煤气化"生产水煤气的新工艺,煤气中氢气含量达50%以上,在唐山刘庄已进行工业性试运转,可日产水煤气5万m3,如再经转化及变压吸附法提纯可制得廉价氢气,该法在我国具有一定开发前景.我国对煤制氢技术的掌握已有良好的基础,特别是大批中小型合成氨厂的制氢装置遍布各地,为今后提供氢源创造了条件。我国自行开发的地下煤气化制水煤气获得廉价氢气的工艺已取得

阶段成果,具有开发前景,值得重视。

(2)以天然气或轻质油为原料制取氢气

该法是在催化剂存在下与水蒸汽反应转化制得氢气。主要发生下述反应: