爱因斯坦的《相对论》一书的原本是英文的还是德文的?
爱因斯坦相对论狭义相对论爱因斯坦第二假设爱因斯坦第二假设--时间和空间伽玛参数宇宙执法者的历险宇宙执法者的历险--微妙的时间质量和能量光速极限广义相对论基本概念爱因斯坦第三假设爱因斯坦第四假设宇宙几何爱因斯坦第一假设全部狭义相对论主要基于爱因斯坦对宇宙本性的两个假设.第一个可以这样陈述:所有惯性参照系中的物理规律是相同的此处唯一稍有些难懂的地方是所谓的“惯性参照系”.举几个例子就可以解释清楚:假设你正在一架飞机上,飞机水平地以每小时几百英里的恒定速度飞行,没有任何颠簸.一个人从机舱那边走过来,说:“把你的那袋花生扔过来好吗?”你抓起花生袋,但突然停了下来,想道:“我正坐在一架以每小时几百英里速度飞行的飞机上,我该用多大的劲扔这袋花生,才能使它到达那个人手上呢?”不,你根本不用考虑这个问题,你只需要用与你在机场时相同的动作(和力气)投掷就行.花生的运动同飞机停在地面时一样.你看,如果飞机以恒定的速度沿直线飞行,控制物体运动的自然法则与飞机静止时是一样的.我们称飞机内部为一个惯性参照系.(“惯性”一词原指牛顿第一运动定律.惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性.惯性参照系是一系列此规律成立的参照系.另一个例子.让我们考查大地本身.地球的周长约40,000公里.由于地球每24小时自转一周,地球赤道上的一点实际上正以每小时1600公里的速度向东移动.然而我敢打赌说steveyoung在向jerryrice(二人都是橄榄球运动员.译者注)触地传球的时候,从未对此担心过.这是因为大地在作近似的匀速直线运动,地球表面几乎就是一个惯性参照系.因此它的运动对其他物体的影响很小,所有物体的运动都表现得如同地球处于静止状态一样.实际上,除非我们意识到地球在转,否则有些现象会是十分费解的.(即,地球不是在沿直线运动,而是绕地轴作一个大的圆周运动)例如:天气(变化)的许多方面都显得完全违反物理规律,除非我们对此(地球在转)加以考虑.另一个例子.远程炮弹并非象他们在惯性系中那样沿直线运动,而是略向右(在北半球)或向左(在南半球)偏.(室外运动的高尔夫球手们,这可不能用于解释你们的擦边球)对于大多数研究目的而言,我们可以将地球视为惯性参照系.但偶尔,它的非惯性表征将非常严重(我想把话说得严密一些).这里有一个最低限度:爱因斯坦的第一假设使此类系中所有的物理规律都保持不变.运动的飞机和地球表面的例子只是用以向你解释这是一个平日里人们想都不用想就能作出的合理假设.谁说爱因斯坦是天才?爱因斯坦第二假设19世纪中页人们对电和磁的理解有了一个革命性的飞跃,其中以詹姆斯.麦克斯韦(jamesmaxwell)的成就为代表.电和磁两种现象曾被认为毫不相关,直到奥斯特(oersted)和安培(ampere)证明电能产生磁;法拉弟(faraday)和亨利(henry)证明磁能产生电.现在我们知道电和磁的关系是如此紧密,以致于当物理学家对自然力进行列表时,常常将电和磁视为一件事.麦克斯韦的成就在于将当时所有已知的电磁知识集中于四个方程中:(如果你没有上过理解这些方程所必需的三到四个学期的微积分课程,那么就坐下来看它们几分钟,欣赏一下其中的美吧)麦克斯韦方程对于我们的重要意义在于,它除了将所有人们已知的电磁知识加以描述以外,还揭示了一些人们不知道的事情.例如:构成这些方程的电磁场可以以振动波的形式在空间传播.当麦克斯韦计算了这些波的速度后,他发现它们都等于光速.这并非巧合,麦克斯韦(方程)揭示出光是一种电磁波.我们应记住的一个重要的事情是:光速直接从描述所有电磁场的麦克斯韦方程推导而来.现在我们回到爱因斯坦.爱因斯坦的第一个假设是所有惯性参照系中的物理规律相同.他的第二假设是简单地将此原则推广到电和磁的规律中.这就是,如果麦克斯韦假设是自然界的一种规律,那么它(和它的推论)都必须在所有惯性系中成立.这些推论中的一个就是爱因斯坦的第二假设:光在所有惯性系中速度相同爱因斯坦的第一假设看上去非常合理,他的第二假设延续了第一假设的合理性.但为什么它看上去并不合理呢?火车上的试验为了说明爱因斯坦第二假的合理性,让我们来看一下下面这副火车上的图画.火车以每秒100,000,000米/秒的速度运行,dave站在车上,nolan站在铁路旁的地面上.dave用手中的电筒“发射”光子.光子相对于dave以每秒300,000,000米/秒的速度运行,dave以100,000,000米/秒的速度相对于nolan运动.因此我们得出光子相对于nolan的速度为400,000,000米/秒.问题出现了:这与爱因斯坦的第二假设不符!爱因斯坦说光相对于nolan参照系的速度必需和dave参照系中的光速完全相同,即300,000,000米/秒.那么我们的“常识感觉”和爱因斯坦的假设那一个错了呢?好,许多科学家的试验(结果)支持了爱因斯坦的假设,因此我们也假定爱因斯坦是对的,并帮大家找出常识相对论的错误之处.记得吗?将速度相加的决定来得十分简单.一秒钟后,光子已移动到dave前300,000,000米处,而dave已经移动到nolan前100,000,000米处.其间的距离不是400,000,000米只有两种可能:1、相对于dave的300,000,000米距离对于nolan来说并非也是300,000,000米2、对dave而言的一秒钟和对nolan而言的一秒钟不同尽管听起来很奇怪,但两者实际上都是正确的.爱因斯坦第二假设时间和空间我们得出一个自相矛盾的结论.我们用来将速度从一个参照系转换到另一个参照系的“常识相对论”和爱因斯坦的“光在所有惯性系中速度相同”的假设相抵触.只有在两种情况下爱因斯坦的假设才是正确的:要么距离相对于两个惯性系不同,要么时间相对于两个惯性系不同.实际上,两者都对.第一种效果被称作“长度收缩”,第二种效果被称作“时间膨胀”.长度收缩:长度收缩有时被称作洛伦茨(lorentz)或洛伦茨-弗里茨格拉德(fritzgerald)收缩.在爱因斯坦之前,洛伦茨和弗里茨格拉德就求出了用来描述(长度)收缩的数学公式.但爱因斯坦意识到了它的重大意义并将其植入完整的相对论中.这个原理是:参照系中运动物体的长度比其静止时的长度要短下面用图形说明以便于理上部图形是尺子在参照系中处于静止状态.一个静止物体在其参照系中的长度被称作他的“正确长度”.一个码尺的正确长度是一码.下部图中尺子在运动.用更长、更准确的话来讲:我们相对于某参照系,发现它(尺子)在运动.长度收缩原理指出在此参照系中运动的尺子要短一些.这种收缩并非幻觉.当尺子从我们身边经过时,任何精确的试验都表明其长度比静止时要短.尺子并非看上去短了,它的确短了!然而,它只在其运动方向上收缩.下部图中尺子是水平运动的,因此它的水平方向变短.你可能已经注意到,两图中垂直方向的长度是一样的.时间膨胀:所谓的时间膨胀效应与长度收缩很相似,它是这样进行的:某一参照系中的两个事件,它们发生在不同地点时的时间间隔总比同样两个事件发生在相同地点的时间间隔长.这更加难懂,我们仍然用图例加以说明:图中两个闹钟都可以用于测量第一个闹钟从a点运动到b点所花费的时间.然而两个闹钟给出的结果并不相同.我们可以这样思考:我们所提到的两个事件分别是“闹钟离开a点”和“闹钟到达b点”.在我们的参照系中,这两个事件在不同的地点发生(a和b).然而,让我们以上半图中闹钟自身的参照系观察这件事情.从这个角度看,上半图中的闹钟是静止的(所有的物体相对于其自身都是静止的),而刻有a和b点的线条从右向左移动.因此“离开a点”和“到达b点”着两件事情都发生在同一地点!(上半图中闹钟所测量的时间称为“正确时间”)按照前面提到的观点,下半图中闹钟所记录的时间将比上半图中闹钟从a到b所记录的时间更长.此原理的一个较为简单但不太精确的陈述是:运动的钟比静止的钟走得更慢.最著名的关于时间膨胀的假说通常被成为双生子佯谬.假设有一对双胞胎哈瑞和玛丽,玛丽登上一艘快速飞离地球的飞船(为了使效果明显,飞船必须以接近光速运动),并且很快就返回来.我们可以将两个人的身体视为一架用年龄计算时间流逝的钟.因为玛丽运动得很快,因此她的“钟”比哈瑞的“钟”走得慢.结果是,当玛丽返回地球的时候,她将比哈瑞更年轻.年轻多少要看她以多快的速度走了多远.时间膨胀并非是个疯狂的想法,它已经为实验所证实.最好的例子涉及到一种称为介子的亚原子粒子.一个介子衰变需要多少时间已经被非常精确地测量过.无论怎样,已经观测到一个以接近光速运动的介子比一个静止或缓慢运动的介子的寿命要长.